

PG-226

I Semester M.Sc. Degree Examination, January/February 2018 (CBCS Scheme) CHEMISTRY

C - 101 : Inorganic Chemistry - I

Time :: 3 Hours

Max Marks: 70

Instruction: Answer question no. 1 and any five of the following.

1. Answer any ten of the following.

(10×2=20)

- a) State the Bent's rule with an example.
- b) The radii of Mg²⁺ and S²⁻ are 0.66 and 1.84 A respectively. Predict the most probable crystal structure of MgS.
- c) LiCl is soluble in alcohol, while all other alkali metal chlorides are insoluble. Why?
- d) Draw the structures and identify the charge on the silicate ions [Si₂O₇]ⁿ-and [Si₃O₉]ⁿ-.
- e) How are nide and arachno structures related to close structures ?
- f) Borazine is more reactive than benzene towards addition of HX. Give reasons.
- g) What is symbiosis? Give an example.
- h) What is Cotton effect ?
- i) How does BrF3 autoionize? How do SbF5 and KF act in BrF3?
-)) Depict the structures of carbonyl clusters, CO4(CO)12 and Fe3(CO)12
- k) Define the terms: isotopes, isobars, isotones and isomers.
- Calculate the binding energy per nucleon for \$9 Co with a mass of 58.95182 amu.
 (Mass of H-atom = 1.008142 amu and neutron is 1.008982 amu).

- 2. a) Discuss the postulates of Fajan's rules.
 - b) Explain the structures of I3 and ICI on the basis of VSEPR concept.
 - c) Draw MO energy level diagram for CO molecule. List out the salient features
 of it. (3+3+4=10)
- a) Boranes have the following formula: B₄H₁₀, B₅H₉ and B₂H₆. Name the boranes and calculate their styx code.
 - b) Write briefly on the use of ZSM-5 in the conversion of methanol to gasoline.
 - c) Outline the preparation, structure and bonding in P₃N₃Cl₆. (3+3+4=10)
- a) Write different chemical reactions involved in anhydrous H₂SO₄.
 - b) Explain HSAB concept. Based on it predict which ion is more stable.
 AgF₂ or AgI₂.
 - Describe the utility of CD in determining the absolute configuration of metal complexes. (3+3+4=10)
- 5 (a) Depict the nuclear binding energy curve and explain its salient features.
 - b) Which one of RPb, and Pb and Pb is the most stablest nuclide? Justify your choice.
 - c) On the basis of electron counts, classify the following carboranes into closo, nido and arachno types, dustify your choice. 1, 3 C₂B₇H₁₃, C₂B₄H₆, C₂B₈H₁₂ and C₂B₁₀H₁₂. (3+3+4=10)
- 6. a) What are Zinti lons? Depict the structures of Pb, and Sn, .
 - b) Calculate limiting radius ratio for tetrahedral arrangement.
 - c) What are pyroxenes and amphiboles ? Give an example for each. Draw their structures. (3+3+4=10)
- 7. a) Write a comprehensive note on magnetic circular dichroism.
 - b) Explain the salient features of Fermi gas model
 - c) The activity of 4.0 MBq source of ²⁴Na becomes 0.051 mc after 2.5 d.

 Calculate the decay constant of ²⁴Na. (3+3+4=10)
- 8. a) Define lattice energy and derive Born-Lande's equation.
 - b) Explain the structure and bonding involved in a dinuclear [Re₂Cl₈]²-
 - Discuss briefly on the applications of heteropoly acids of tungsten and molybdenum. (4+3+3=10)